data completeness

The Role of Data Completeness in Assuring Overall Data Quality

  • John Morrell
  • May 26, 2021

In its early days, the term data quality was often associated with how “clean” or “dirty” a dataset was.  Quality was measured by how many erroneous, wrongly formatted, or missing values were in a dataset.  A major component of data preparation was data cleansing to improve data quality.

Over time, the definition of data quality expanded to include additional characteristics, including consistency, reliability, and recency (how up to date).  When related to data governance, data sets would be labels with “trusted” flags to indicate high degrees of quality, and sometimes data quality scores would be used.

More recently, the terms data completeness and data usefulness have been added to the data quality mix.  Many define data completeness as datasets that have no or a limited number of missing values.  This points back towards the tasks of data cleansing.

I tend to strive for higher meaning when I describe data completeness.  I see data completeness as datasets that have ALL the necessary data to effectively explore and solve an analytical question in-depth, with full context, and at all angles.  This definition shines might more on how data sets can improve analytics accuracy and detail.  After all, in today’s market economy and microcosms, every organization needs to explore every detail in their analytics to make the proper decisions.

Data completeness is data done right.  In this recently released eBook, Maximizing Data Completeness for Highly Effective Decision Making, we explore various methods Datameer Spectrum customers have used to make their datasets more in-depth and well-rounded to support their decision-making processes.  Here is a sneak preview.


The first step in driving greater data completeness is to foster collaboration between your data engineering team and the analytics community (analysts and data scientists).  And this does not mean getting them together for drinks on Fridays but rather allowing them to interactively work together on their data pipelines to ensure analytics requirements are met.

Three key data pipeline platform capabilities can contribute greatly to both data usefulness and completeness: reuse, extensibility, and collaboration.  Both individually and in concert, these features help DataOps processes increase the production speed, output volume, breadth, and quality of analytics datasets.

Collaboration allows data engineering, analyst, and data science teams to work together to ensure usefulness and completeness. The extended project teams can interactively create, explore, and test data pipelines and datasets to create an agile process that ensures project requirements are met and can adjust requirements as needed.

Data Enrichment

Data enrichment is a highly important yet often overlooked aspect of data pipeline design.  It is often overlooked because many data pipeline tools offer limited data enrichment capabilities.  Data enrichment features and functions are crucial to gaining high data completeness.  Enrichment is also an area where collaboration and extensibility come into play by allowing analysts and data scientists the ability to enrich data in a self-service manner.

A Datameer customer is title insurance, property, and mortgage-related services had highly complex and diverse datasets including data coming from services partners.  The diverse data required a heavy dose of coding to normalize, enrich, and classify data for analytics.  The customer turned to Datameer Spectrum to eliminate their dependence on time-consuming, manual SQL coding and took advantage of the rich array of Spectrum functions to have data engineering teams normalize and classify data and analysts enrich data to their specific analytics needs.

Data Aggregation & Organization

Making datasets consumable and analytics-ready often requires the data to be materialized into aggregated views or organized in other ways.  This allows data to be more easily taken into context and summarized.  This is an area often overlooked because most data pipeline tools, as well as for analytics tools, only provide simple means to aggregate data, forcing analysts to write complex SQL.

A leading market research and consumer trends company, and Datameer customer, takes large volumes of consumer purchase and behavior data, organizes and analyzes it, then delivers data and analytics to their hundreds of consumer goods and retail clients.  The analytics delivered are diverse with unique requirements.  The firm uses the diverse set of Spectrum windowing, sessionization, and grouping functions to organize the data, then bucket and aggregate it using intricate dimensions for more effective insights.

Data Science

Most machine learning and AI models require data to be encoded and fed in very specific formats.  Very few data pipeline tools offer specific functions to shape and organize your data specifically for data science analytics.  Without specific formulas for data science encoding, shaping data for AI and ML can be very tedious and time-consuming

A Datameer customer is the largest multinational pharmaceutical firm in Asia and has high volume, complex, and diverse datasets that feed their data science projects and operational models.  The data science projects require wide and deep datasets that have enriched and encoded columns specific to the model.

Prior to using Spectrum, the data was blended, enriched, and encoded by coding within their data science notebooks – a time-consuming and error-prone process with limited reuse and operationalization.  With Spectrum, the firm is able to organize, enrich, and encode the data within their data pipelines in a fraction of the time without coding using the rich set of Spectrum functions.

Wrap Up

These a just a few examples of how Datameer customers are able to maximize data completeness, make datasets more useful to their analytics community, and drive highly effective decision making.

Individually, the aforementioned capabilities make datasets more useful and complete to make data engineering faster and easier for specific use cases.  As a suite of functions, a broader array of use cases can be covered using a single data pipeline platform – Datameer Spectrum – gaining greater ROI from your data engineering efforts and increasing the overall ROI from your analytics initiatives.

Spectrum offers the largest set of data preparation and transformation functions – over 300 – than any other ETL and data pipeline tool.  Data preparation is a first-class component of the Datameer Spectrum toolset, not an afterthought or non-existent as it is in other tools.  And each of these functions is graphical and wizard-driven, not requiring any coding and speeding data pipeline creation.

But don’t take my word for it – see for yourself.  Schedule a personalized demo with our team or request a free trial.  You can see firsthand the power and ease of Datameer Spectrum.

Subscribe for the Latest Posts


Discover the Top ETL and Data Integration Platforms


Featured Blog Posts

The Role of Chief Data Officers (CDOs) in 2020
The Role of Chief Data Officers (CDOs) in 2021

The Chief Data Officers role (CDOs) in 2021 is evolving as CDOs are having quite possibly their m...

  • John Morrell
  • April 3, 2021
Spectrum ETL
Disrupting the no-code cloud ELT market: Datame...

More than just loading Data: Datameer launches Datameer Spectrum ETL++ to disrupt the no-code clo...

  • Press Release
  • February 9, 2021
Google Partners with Datameer
Datameer Partners with Google Cloud to Deliver ...

Datameer is now a Google Cloud migration partner The partnership will help customers build secure...

  • Press Release
  • December 2, 2020
Datameer Spotlight - Disrupting the traditional central data warehouse model
Disrupting the traditional central data warehou...

The new flagship product from Datameer upends a three-decade-old approach to data analytics ̵...

  • Press Release
  • December 1, 2020

More from Our Blog

Top 5 Fivetran competitors

Top 5 Fivetran Competitors and Alternatives

What is Fivetran?  Fivetran is a cloud-based ELT integration tool that teams can use to synchroni...

  • Justin Reynolds
  • June 15, 2021
The Simplest Road to a Modern Data Stack with Snowflake

The Simplest Road to a Modern Data Stack with S...

The first building block of a cloud data stack starts with Snowflake.  Your analytics engine and/...

  • John Morrell
  • June 14, 2021
Top 5 Matillion Competitors

Top 5 Matillion Competitors and Alternatives

Matillion ETL Review Matillion is a cloud-based ETL tool that enables teams to create and orchest...

  • Justin Reynolds
  • June 10, 2021

Updating your ETL? Your guide to the 10 things to consider when modernizing your ETL.