5 Ways to Fuel Your Big Data Analytics in 2018

  • John Morrell
  • March 5, 2018

Watch the BrightTALK Webinar Here

But to get to this point, organizations must transform their data, which often comes from various disparate sources/silos, into re-usable, consumable, and executable data assets.

So, how best to go about fueling your big data analytics program to derive the most value? Read on for five ways to boost your big data analytics in 2018.

1. Get Agile!

Traditional analytics drew heavily on IT teams’ involvement whenever changes needed to be made to the ETL and static data warehouses, ultimately resulting in a complex and convoluted reporting system. With this layout, new forms of analytic results could often take months to obtain.

But now, with tools like Datameer and Hadoop offering a schema-less architecture for analytics, business teams can work on raw data, curating and engineering it for quick consumption. All of this occurs within a simplified metaphor that relies on upon easily understood spreadsheets and visuals.

An added benefit of this visual approach is its tendency to reduce data production process inefficiencies. Since the data is delivered in an easily consumable visual format, the number of processing iterations between IT and business teams is lessened because data preparation and refinement are more intuitive.

The results of this schema-less approach? Reduced times to data delivery – Often going from months down to days and, in some cases, as little as a few hours. Not to mention the reusability of the components/models created during the production process.

2. Deliver More Data

Finding ways to make all of your raw, siloed data and turn it into something meaningful should be a critical component of your 2018 Big Data Analytics strategy. But why stop at simply transforming your data into useful information? There are ways to extract insights from the raw data and speed up this process, giving the organization faster and more efficient access to actionable data.

One key way to achieve this goal is to create a “cooperative curation process” between your data analytics team’s key members. Such a process creates a “Data Village” of sorts. Data engineers, business analysts, CDOs, and business owners are brought together within a single toolset that allows them to synchronize the data curation process and then subsequently execute on the data using their favorite BI tools.

Accomplishing this level of collaboration across various roles requires a toolset with a strong visual component that provides the ability to graphically see the shape and aspects of the data in a freeform manner without dimensions or restrictions. The tool must also be capable of performing its analytical function at scale – combing through billions of records and thousands of attributes to drill down and across to the most important information hidden within massive quantities of data.

Datameer Visual Explorer

Datameer Visual Explorer provides the responsive architecture capable of this type of large-scale data exploration, with a backend that delivers sub-second response times. Its schema-less architecture also allows you to perform free-form exploration directly on your data lake because it doesn’t rely on fixed, pre-determined models/paths. This means there’s no need to migrate your data into your network or systems to explore it in any direction you choose interactively.

Datameer Visual Explorer also allows you to quickly pre-aggregate your data on the fly, dramatically speeding up the exploration process. And, because there is no pre-computing of indexes, extra storage requirements are reduced, making exploration on your data lake far more resource-efficient. The benefits of performing data curation, preparation, and exploration all in one integrated stack? Faster analytic cycles and complete control of governance, all in one place, on one product.

3. Power New BI

The BI and Big Data worlds today are still in need of more interconnection. While many organizations work with big data, they keep these activities distinct and separate from their BI tools. There are many similarities and potential synergies that could exist if we bring BI teams and Big Data teams closer together – to use a term from earlier: We must create the “Data Village.”

To do this, we must first ask the key question: What am I trying to achieve by integrating BI with Big Data? If the answer is that you want to engage in the new age, Big Data-powered BI, then you must involve the role of the power analyst. These individuals will explore big, new questions revolving around digital transformation – How do I get to know my customer better? How do I deal with omnichannel customer engagement? How do I drive better customer acquisition and retention processes?

Answering these questions requires free-form data exploration that doesn’t limit the investigation process with pre-determined schemas and methods. Herein lies the “sweet spot” for forward-looking organizations determined to drive new value and action from unrestricted access to vast quantities of data. Big Data-powered BI truly enables digital transformation because it emphasizes agility and the blending of new datasets to drive action. This stands in stark contrast to traditional approaches that take big data and run it through existing BI processes.

Unfortunately, many organizations are attempting to recreate their EDW stack on top of Hadoop to achieve new BI insights. The result is often the same type of data latency, inefficient data movement, and disjointed governance and security infrastructure issues that existed in the EDW world.

The solution? Use your data lake as the BI accelerator. Put all of your data into the data lake, facilitate and curate your data assets, and bring your business analysts directly to the lake to perform free-form data exploration that will go a long way towards answering new questions and driving business agility.

4. Use the Cloud

There are several reasons why businesses are deciding to take their analytics to the cloud. Chief among these is a desire for scalability. However, greater flexibility, lower costs, faster response to business, and reduced IT involvement also make a list.

For many organizations looking at a move to the cloud, there are a couple of factors that bear consideration. First, businesses recognize that, while attractive, the cloud isn’t their only way of performing analytics. The cloud must marry with the initiatives they have in play on-premise to create a hybrid infrastructure that facilitates both.

Secondly, as always, security is a top priority. When working with big data in the cloud, businesses must always be certain they are utilizing tools and platforms that give them the same security level in the cloud that they can achieve on-premise.

So with these two factors in mind, what should businesses be looking to get out of the cloud when it comes to their big data?

  • Increased Business Agility: The ability to spin up resources in the cloud as needed to allow business teams to run an analysis, crunch data, and work with the data on an ad-hoc basis
  • Follow Data Gravity: The ability to land data in the cloud when it’s most convenient to reduce unnecessary data movement.
  • Elasticity: The flexibility to scale to accommodate varying workloads in an on-demand fashion
  • Remove IT Barriers: The ability to engage resources in the cloud without waiting for IT involvement.

To ensure the above benefits of working with your big data in the cloud, it is essential to choose a solution with a hybrid, cloud-first architecture that separates compute from storage to guarantee the level of elasticity needed to scale with your workloads.

5. Deliver “Big” A.I

Operationalizing AI in today’s business world can be tricky because the process to do so is very customized in nature. This process is called Re-implementation and involves the use of large, costly amounts of custom coding to generate business-ready AI frameworks that are often difficult to maintain and integrate with other systems.

To solve this dilemma, organizations must utilize a tool that marries the building of data pipelines with AI insights. Datameer has done this by creating its SmartAI feature, which allows integration with AI and machine learning frameworks (like Google’s TensorFlow) to allow data preparation, feature engineering, and blending that optimizes the data for the AI framework to work with.

Once prepared, the data can be run through training processes and used to create a model representing a business problem that needs to be addressed. Once created, the model can then be re-ingested by Datameer and, with a single button, deployed to operationalize the data pipeline and enrich data insights.

The benefits of utilizing AI in this manner are faster times to deep learning insights, the ability to deploy models directly on the data lake, and the relief of avoiding maintenance issues involved with custom coding. Not to mention the fact that the entire process remains secure and governed within the organization.

The Long and Short of It

Big data enables businesses to transform themselves to take advantage of the digital economy to empower them to take action on the insights that their data reveals.

The key to deriving valuable business outcomes from big data is to remove the barriers between the people, tools, and methods involved in the various stages of the analytics journey.

By capitalizing on existing and emerging technologies that enable more inclusive and seamless access to big data, organizations will continue to build their “Big Data Villages” and power their business decisions with increasingly sophisticated BI insights.

Instant Access To Our Free Library Of Resources

Discover the Top ETL and Data Integration Platforms


Featured Blog Posts

Five Critical Success Factors To Migrate Data to Snowflake
Five Critical Success Factors To Migrate Data t...

You’ve decided to modernize your data and analytics stack and migrate analytics workloads to the ...

  • John Morrell
  • May 10, 2021
ETL++: Reinvigorating the Data Integration Market

(This article first appeared on Medium on April 6, 2021.) The definition of “++” means incrementa...

  • John Morrell
  • April 12, 2021
Spectrum ETL
Disrupting the no-code cloud ELT market: Datame...

More than just loading Data: Datameer launches Datameer Spectrum ETL++ to disrupt the no-code clo...

  • Press Release
  • February 9, 2021
Google Partners with Datameer
Datameer Partners with Google Cloud to Deliver ...

Datameer is now a Google Cloud migration partner The partnership will help customers build secure...

  • Press Release
  • December 2, 2020

More Resources We Think You Might Like

Top 5 Fivetran competitors

Top 5 Fivetran Competitors and Alternatives

What is Fivetran?  Fivetran is a cloud-based ELT integration tool that teams can use to synchroni...

  • Justin Reynolds
  • June 15, 2021
The Simplest Road to a Modern Data Stack with Snowflake

The Simplest Road to a Modern Data Stack with S...

The first building block of a cloud data stack starts with Snowflake.  Your analytics engine and/...

  • John Morrell
  • June 14, 2021
Top 5 Matillion Competitors

Top 5 Matillion Competitors and Alternatives

Matillion ETL Review Matillion is a cloud-based ETL tool that enables teams to create and orchest...

  • Justin Reynolds
  • June 10, 2021

Updating your ETL? Your guide to the 10 things to consider when modernizing your ETL.