About Us Icon About Us Icon Business Analyst Icon Business Analyst Icon CEO Icon CEO Icon Datameer Icon Datameer Icon Envelope Icon Envelope Icon Facebook Icon Facebook Icon Google Plus Icon Google Plus Icon Instagram Icon Instagram Icon IT Professional Icon IT Professional Icon Learn Icon Learn Icon Linkedin Icon Linkedin Icon Product Icon Product Icon Partners Icon Partners Icon Search Icon Search Icon Social Networks Icon Social Networks Icon Share Icon Share Icon Support Icon Support Icon Testimonial Icon Testimonial Icon Twitter Icon Twitter Icon

Datameer Blog

2014: The Year of Big Sensor Data

By on December 11, 2013

**This post originally appeared in the SandHill blog**

In looking at Google search-term trends, the business-friendly term “Big Data” has surpassed the more technical term “Hadoop,” indicative of the fact that we’ve finally crossed the chasm from early adopters to the early majority. This, to me, indicates there’s a whole new class of Big Data use cases coming our way in 2014.

The first generation of Big Data use cases were all around understanding user behavior from human-generated data. There are website analytics, understanding where people are clicking and in what order, how long they spend on a site and where they tend to drop off, in an effort to remove any obstacles along the way in the sales conversion funnel. There are credit card transaction data analysis to improve marketing and to find opportunities for cross and upselling. Online gaming companies build entire games around the ability to collect and analyze gamer behavior for iterative game development to keep the gamer engaged longer. And of course there are social media sentiment analysis, network analysis, and more.

This human-generated data analytics, usually with the objective of making more money, is quickly becoming the status quo.

I believe the next generation of Big Data use cases will revolve around making sense of the Internet of Things (IoT) to help optimize manufacturing processes or improve products with the objective of making money by saving time and reducing costs.

A study found that auto manufacturing executives estimate the cost of production downtime ranges from $22,000 per minute to a high of $50,000 per minute, so using data to optimize production is a no-brainer. For example, one major car manufacturer lowered its factory outage time by 15 percent by using Datameer to identify factors that led to robotic failures.

The company combined unstructured and structured data from multiple systems, including PLC (programmable logic controllers) and proprietary factory and maintenance ticketing systems. The PLC devices contained detailed robot data, such as the temperature of components when the robot broke down. To help understand when certain robots broke down in the past, they needed to pull together and analyze temperature and vibration sensor log files with maintenance history. Using the findings, the company was able to create a robot maintenance schedule to identify and service robots before failure occurred.

There are countless opportunities for the manufacturing business to get in on the benefits of Big Data while it’s still the “early days.” As we’ve already seen in various other vertical industries, I suspect by the end of 2014 we’ll see urgency from manufacturers to investigate and implement Big Data solutions to optimize processes, pull away from their competitors and ultimately save massive amounts of time and money.



Connect with Datameer

Follow us on Twitter
Connect with us on LinkedIn, Google+ and Facebook

Stefan Groschupf

Stefan Groschupf

Stefan Groschupf is a big data veteran and serial entrepreneur with strong roots in the open source community. He was one of the very few early contributors to Nutch, the open source project that spun out Hadoop, which 10 years later, is considered a 20 billion dollar business. Open source technologies designed and coded by Stefan can be found running in all 20 of the Fortune 20 companies in the world, and innovative open source technologies like Kafka, Storm, Katta and Spark, all rely on technology Stefan designed more than a half decade ago. In 2003, Groschupf was named one of the most innovative Germans under 30 by Stern Magazine. In 2013, Fast Company named Datameer, one of the most innovative companies in the world. Stefan is currently CEO and Chairman of Datameer, the company he co-founded in 2009 after several years of architecting and implementing distributed big data analytic systems for companies like Apple, EMI Music, Hoffmann La Roche, AT&T, the European Union, and others. After two years in the market, Datameer was commercially deployed in more than 30 percent of the Fortune 20. Stefan is a frequent conference speaker, contributor to industry publications and books, holds patents and is advising a set of startups on product, scale and operations. If not working, Stefan is backpacking, sea kayaking, kite boarding or mountain biking. He lives in San Francisco, California.